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Abstract. The diagonalization approximation is used to investigate the resonance states of He and H™
respectively near the n = 4 and n = 5 hydrogen thresholds. Computations are carried out for states of
1.3 PO symmetries; energies, total and partial widths of autoionization states of helium and autodetaching
states of the negative hydrogen ion are calculated. Comparison is made with experiment and theory.

PACS. 32.80.Fb Photoionization of atoms and ions — 32.80.Gc Photodetachment of atomic negative ions

1 Introduction

Studies of autoionization states of helium have received
a great deal of attention in recent experiments thanks
to the advent of modern synchrotron radiation sources
with their associated high-resolution monochromators
[1-3]. A set of calculations of the characteristics of dou-
ble excited resonances in helium have been carried out by
various methods using different approaches. Oberoi [4] has
calculated the energy position of (4In'l’) doubly excited
states of helium with a conventional Feshbach approach
by using a hydrogen orbital for the inner electron. The
energy calculation of these states has been performed by
Herrick and Sinanoglu [5], and Robaux [6] with a mod-
ified Feshbach projection formalism such as a truncated
diagonalization method in a basis of hydrogen configu-
rations. In addition, Herrick and Sinanoglu [5] have also
calculated total widths of the eleven lowest ! P° and 2P
resonances. Davis and Chang [7] used the Feshbach sad-
dle point technique to calculate the energies of lowest 1 P?
resonances. Ho [8] has used the complex rotation method
with Hylleraas basis functions to calculate the resonance
positions and total widths of the three lowest ' P? and 3 P°
resonances. Wintgen and Delande [9] have also used the
complex rotation method to calculate the resonance posi-
tions. Other theoretical calculations of the energies of the
L PY states are given by Fukuda et al. [10] using the dia-
batic and adiabatic hyperspherical method. Nevertheless,
in most of these works only a few calculations have pro-
duced a complete set of resonance parameters (resonance
position, total and partial widths) for the doubly excited
1,3 PO resonances in helium.

Among the two-electron systems, the negative hydro-
gen ion H- (Z = 1) is also of great interest due to
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the fact that the electron-electron interaction in H™ is
as strong as the nucleus-electron one. These interactions
lead to strong correlation effects which explain the ex-
istence of shape resonances above threshold in addition
to the usual Feshbach resonances which lie below thresh-
old and which are common to any two-electron systems.
Such resonances were observed recently [11,12]. These ob-
servations are completed by new measurements of field-
induced window-type resonances in electron detachment
of H™ in the static electric field [13,14]. Few theoretical
methods have been used to carry out a complete set of res-
onance parameters such as energies and widths of 13P°
states of H™ converging to the n = 5 hydrogen thresh-
old. The most intensive calculations in the literature are
obtained by using the complex coordinate rotation and
have provided the energies and widths of several symme-
tries up to n = 9 threshold [15-17]. There are also some
adiabatic calculations using hyperspherical coordinates
[18,19]; however, no widths were given in these calcula-
tions.

In this work, we have reported calculations of the ex-
citation energies and the total widths of the 'P° and
3P% symmetries for several resonances of doubly excited
1.3 PO states of He and H™ below the n = 4 and 5 hydro-
gen threshold respectively. In addition we have calculated
the partial widths related to the different open channels.
These calculations were done in the framework of the di-
agonalization approximation in the LS coupling scheme.
Particular interest of the diagonalization method is to take
into account the coupling between closed and open chan-
nels in terms of perturbation theory and to neglect the
indirect coupling of resonant states through the open
channels. This approximation has already been used with
success for the description of autoionizing resonances in
helium and some helium-like systems converging to n = 2,
3 and 4 ionization thresholds of the residual ions [20-26].
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2 Theory

2.1 Basic formulas and approximations

For two-electron systems, the partial amplitude T} (E) in
terms of dipole matrix elements is defined by:

T;(E) = (¢, Do),

where D is the momentum operator, 1 is the atomic ini-
tial wave function and v¥g; is the wave function of the
system ion (or hydrogen atom in the case of H™) + photo-
electron in the channel j. In the diagonalization approx-
imation, the final-state wave function is expanded in the
subspaces of closed and open channels as follows:

Yij(ri,ma) = A Y [x(r1)Us; (E,72)]

k
+ Y Au(B)u(ri,ra), (1)

where A is the operator of antisymetrization, k represents
a set of quantum numbers characterizing the final system
in the subspace of open channels, and Uy;(E,r2) is an
unknown function describing the motion of the photoelec-
tron.

Y1 (1) is the eigenfunction of the residual ion or atom
(hydrogen atom in the case of H™) satisfying the relations:

(Yr|tr) = Orrr
(| H|tbw) = exOppr + Vg

The functions ¢,,(r1,72) are obtained by unitary transfor-

mation of the Hamiltonian H in the subspace of closed
channels:

¢M(r17 7”2) = A\Z %Wl(ﬁ)i/)m(ﬁ)]v

im

®3)

with the condition of diagonalization:

<¢u|ﬁ|¢u> = Eu5uu- (4)

The coefficients o, of the unitary transformation (3) are
found by solving the system of linear algebraic equations:

> {Bu = B — (0lVIx) fow =0, (5)

here V = 1/|r; — ry| (in a.u.) is the electron-electron in-
teraction potential, and EoAis the energy eigenvalue of
the zero-order Hamiltonian Hy corresponding to the eigen-
functions x, defined by:

Xu = A (r1)dm (r2)]. (6)

The determination of the function ¥ g;(r1, r2) is equivalent
to the calculation of the coefficients A, (F) and Uy, (E, ra).
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Detailed calculations of these coefficients and systems of
equations which they satisfy have been reported by Bal-
ashov et al. [20] and by Wagué [22,26]. From [22], the par-
tial amplitude that describes the formation of a He™ ion
(or a residual neutral hydrogen atom in the case of H™)
and a photoelectron in a definite state has been defined
by the following expression:

T, = (s (B)Dlo) + (9,1l (B))

. ZeloulVIon(E)) ok (B) Dlo)
Sk 6ulVIn(B))I2

: (7)

In (7), ¢;(E) is the wave function of the continuous spec-
trum in the channel j, without resonance interference;
e = (E - E,)/(1/2)T}* is the relative deviation from
resonance; E,, is the energy of the resonant level p; ¢ is
the profile index of the resonance; the sum of integrals in
the denominator of (7) determines the total width I'\%* of
the autodetaching level u of H™ (or autoionization states
of He). The total width and the profile index are defined
respectively by the equations:

Lt =2m 3 (6l Ves () (sa)

J

and

. _(@ulDlYo)
™ i (@l VIow (B)) {0 (E) D Io)

(8b)

2.2 Calculation of the decay probabilities
of the resonant states

The autodetachment probabilities of the high-lying states
of H™ are obtained by using the approximation involving
hydrogen wave functions for the bound electrons with the
effective charge Z = 1. In this case, the outgoing electron
is considered to be free from the residual neutral hydro-
gen atom, and thus the radial part of the continuum wave
functions ¢;(E) is described by the normalized spherical
Bessel function, to represent a free electron carrying a def-
inite angular momentum ! in the channel j. This function
has the following form:

Rkl(r) =

[2k 2)Y (k) .
%7((2)1 f)l)l' rte™ (Fy(L+ 1,20+ 2;2ikr)  (9)

where 1 Fy (1+1, 21+ 2; 2ikr) is a confluent hypergeometric
function. The spin-angle functions in all cases can be han-
dled by the well-known methods of the Wigner algebra. To
determine the autodetachment probability the evaluation
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Rz(nlll nalo — nsls k)l4) = N1Na N3Ny
ny—li1—1 no—Ilag—1 nzg—Iz—1
x> > > B(ni,li,51)B(n2,ls, 52)B(ns, ls, s3)(y1 + ys)'t Hetorteztet?
s1=0 so=0 s3=0
li+lz+s1+sat+z+2
X ((+ls+s+sata+2)! [, () - Ty e+ 2+ 3)
t=0
li+l3+s1+sa—z+1
lhi+Il3+s1+s2—x+1)!
( - Z”Yl +173),22z,1 ) Z Jll;+32+w+1+s(’71 +v2 + ’73)) (10)
s=0
of the following basic type integrals is required [27]: JLa(8) =
see equation (10) above 2(n +2)BJn1(B) +[(L+1) = (n+ 1)(n +2)]J5.(6) (14d)
k2 + 62
where
i ll 3 ll —1 Zl 1/2 k'2 + 2 JTIL + 2n, JTZL,
2n; n; (l+1)—n(n+1)
(11a)
la (L)) (26 + 1) _ _

Ny =y 2R @R () a8 = 5@ =D 8 - 8I1B)) - (14
For the calculation of the decay probabilities of the res-
onant states of helium following the works of Brandsen

B B (—1)%i (2;)li s ) et al. [29] and Zemtsov [27] we have used equations simi-
nilisi = (ni —l; — 1 — s)N(2L; + 1+ 5;)!s;!” lar to equations (10-14) by replacing the Bessel Functions
7. with Coulomb wave functions.
vi=— i=1,23 (12)
n
3 Results and discussions
“+oo
J,ll (B) = / e~ (Btik)r T§+l+1 The diagonalization calculations of the excitation energies
0 _ of the autoionization states of helium are carried out in
X (141,20 + 2, 2ikra)drs- (13)  the 24 x 24 basis which contained configurations: 4in/l’

In the expressions of J!(3), 1F1(a,b,z) is a confluent hy-
pergeometric function.

For practical calculations it is convenient to use recur-
rence relations between these integrals, which can either
be obtained by integrating the Schrédinger equation or by
using the functional relationships between associated hy-
pergeometric functions 1 Fi (a, b; ) and 1 F} (a+m, b+n; x)
and their derivatives [28].

For arbitrary values of n and [ the functions J!,(3) are
connected with the functions J}(3) and J°,(3) which can
be obtained from the following formulas:

(21 4 1)!

Jll(/@) = W (14a)
J°(B) = %arctang (14b)

l
Jll+1(/8> =2 §€2++1;§J91(/6> (14c)

with n’ =4, 5, 6, 7. The wave functions are described by
the antisymmetric product of the hydrogen wave functions
determined in the field of nuclear charge Z = 2.

For the excitation energies of the autodetaching states
of H™, we have used the basis of 49 configurations: nin’l’
with n = 5; n’ < 10 and the hydrogen wave functions used
in this case are determined in the field of nuclear charge
Z = 1. We have converted some resonant parameters in
the tables by using the infinite Rydberg constant R, =
13.605 698 eV, and by considering the double-detachment
threshold of H™ at 14.3525 eV. In order to compare our
results on the helium atom, with those of other theoretical
and experimental works, we have adopted the classifica-
tion scheme of Herrick and Sinanoglu [5]. In this classifica-
tion new correlation quantum numbers 7', K and A were
introduced describing the angular (T, K) and radial (A)
correlations. In this scheme, the double-excitation states
are denoted by n(K,T)4 where N and n are respectively
inner and outer electrons’ quantum numbers. We have la-
beled our results on helium according to the abbreviated
form of the classification scheme of Zubek et al. [1] in
which the n(K,T)#% notation is replaced by N, K, (in this
work "= 0 or 1).
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Table 1. Energies (—E in a.u.) of the ' P® autoionizing states of He converging to N = 4 threshold of the residual He™ ion.

Theoretical results

Experimental results

States This work (a) (b) (c) (d) (e) (f) (2)

24 0.1946 0.1946 0.1939 0.1945 0.1930 0.1963 0.1942  0.1943
04 0.1760  0.1760 0.1770 0.1788 0.1783  0.1792  0.1791
35 0.1688 0.1688 0.1688 0.1688

1s 0.1604 0.1604 0.1610

25 0.1603  0.1603 0.1606 0.1605 0.1629 0.1619 0.1610
36 0.1517 0.1517 0.1517

0Os 0.1507 0.1507 0.1510 0.1554 0.1554 0.1511
-1s 0.1488 0.1488 0.1496

26 0.1473  0.1473 0.1488 0.1474 0.1497 0.1487  0.1478
-24 0.1468  0.1468 0.1473

ls 0.1465 0.1465 0.1466

(a) Herrick and Sinanoglu [5]

(b) Brian F Davis and Kwong T Chung [7]
(c)Ho Y.K. [8]

(d) Madden and Codling [30]

(e) Woodruff and Samson [31]

(f) Zubek et al. [1],

(g) Domke et al. [3]

Table 2. Energies (—F in a.u.) of the ® P autoionizing states
of He converging to N = 4 threshold of the residual He™ ion.

Theoretical results

States This work (a) (b) (c)
34 0.2007 0.2007 0.2009 0.2001
14 0.1858 0.1858 0.1860 0.1860
25 0.1653 0.1653 0.1654

35 0.1645 0.1645 0.1648

-1y 0.1613 0.1613 0.1613

0s 0.1557 0.1557 0.1557

1s 0.1555 0.1553 0.1553

36 0.1497 0.1499 0.1500

26 0.1490 0.1495 0.1494

-1s 0.1452 0.1450 0.1450

16 0.1432

(a) Herrick and Sinanoglu [5]
(b) R.S. Oberoi [4]
(c) Ho Y.K. [8]

Excitation energies of He are reported in Table 1 for
1PY states and in Table 2 for 3P? states. A comparison
is made with the theoretical results obtained by Ho [8],
Herrick and Sinanoglu [5] and Davis and Chung [7], using
respectively the complex rotation, the Feshbach truncated
diagonalization formalism and the Feshbach saddle point
variational technique. Comparison is also made with ex-
perimental results of Madden and Codling [30], Woodruff
and Samson [31], Zubeket et al. [1] and Domke et al. [3].
The present calculations are generally in good agreement
with existing theoretical data both for ' PY and 3 P? states,
especially with those obtained by Herrick and Sinanoglu
[5] using the Feshbach truncated diagonalization formal-
ism which is more complicated than the diagonalization
approximation used in our calculations and which in prac-
tice entails solving a system of linear algebraic equations.

Concerning the experimental measurements, the data
given by Domke et al. [3] and Madden and Codling [30]
for the ' P° resonances agree with the present results. In
these experimental investigations, only states of the two
most intense Rydberg series (4, 2,,) and (4, 0,), accord-
ing to the abbreviated form of the n(K,T)4 classification

scheme [1] were resolved below the n = 4 threshold of He™
and (4In’l") triplet resonances of He have not been inves-
tigated due to forbidden selection rules in photoionization
experiments.

Excitation energies of the negative hydrogen ion
are summarized in Table 3 for 'P° states, in which
comparisons are made with other calculations obtained
with the complex coordinate rotation [16] and with the
adiabatic calculations using hyperspherical coordinates
[18,19]; comparisons are also made with experimental
measurements [11,14]. Table 4 compares our resonance
positions of the 3 P° states with theoretical predictions ob-
tained by using the complex coordinate rotation [15,17].
The present calculations are reasonably in good agreement
with existing theoretical and experimental data. However,
we have not found a ' P° resonance at the energy position
close to 0.043629 Ry as obtained by Ho [16] and Koyama
et al. [18] for the 1PY states. Concerning the resonance
positions of the 3PY states there are not many published
works near the n = 5 hydrogen threshold and for these res-
onances our results are compared with the results given
in complex coordinate formalism [17] which concern only
the two first resonances. In our knowledge, there is no
experimental data for this symmetry.

The total widths of resonance states of He are reported
in Table 5 for 1 PY states and Table 6 for 3P° states. A
comparison is made with the theoretical results obtained
by Herrick and Sinanoglu [5] and Ho [8] using respectively
the Feshbach formalism and the complex rotation method.
For ! PO states, comparison is also made with experimental
results obtained by Zubek et al. [1] and by Domke et al.
[3]. Our results agree well with those obtained by Herrick
and Sinanoglu [5] both for 1P? and 3P° states. For the
total widths of the P9 (1) and 3PP (2) states, our results
are quite different from Ho’s results. Only the width of
the 1P? (2) is close to the one we have calculated. The
width of the !PY (1) calculated by Ho [8] is about two
times the width we have given for the same resonance.
One can see that the largest autoionization widths corre-
spond to the resonances of the (4, 2,,), (4, 0,,) and (4, —2,,)
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Table 3. Energies (—E in Ry) of the ' P° autodetaching states of the H™ ion converging to N = 5 hydrogen threshold.

Theoretical results Experimental results

States Present (a) (b) (c) (d) (e)
5s 5p 0.049159 0.049033 0.04937 0.04900 0.049010 0.048922
5d 5f 0.045202 0.045261 0.04516
- - 0.043629 0.04300
Ss 6p 0.042751 0.042656 0.04269 0.04260 0.042762
Sp 8d 0.042486 0.042140 0.04200
S5s 7p 0.042117 0.042063 0.04186
5f 7g 0.041851 0.040939 0.04090 0.041212
10s 5p 0.041287 0.040894
5d 10f 0.040995 0.040486
10d 5f 0.040393 0.040383
5d 9f 0.040246
S5p 9d 0.039906

(a) Ho Y. K. [16]

(b) Koyama et al. [18]

(c) Sadeghpour H. R. [19]
(d) Harris et al. [11]

(e) Halka et al. [14]

Table 4. Energies (—E in Ry) of the >P° autodetaching states of the H™ ion converging to N = 5 hydrogen threshold.

Other theoretical results

States Present (2)
5s 5p 0.051544 0.0512
5p 5d 0.045967 0.04655
5p 6d 0.043885

5s 7p 0.043692

Sp &d 0.041579

8s 5p 0.041297

5d 7f 0.041092

10s 5p 0.040480

S5g 10h 0.040398

S5p 9d 0.040315

5d 10f 0.040021

5f 10g 0.039571 0.039902

(g) Ho Y. K. [17].

Table 5. Total widths (T ﬁOt in eV) of the ' P° autoionizing states of He converging to N = 4 threshold of the residual He™ ion.
The number in parenthesis is the power of ten by which the adjacent number should be multiplied.

States (K;)  Present work (a) (b) (c) (d)

24 0.464 (-1) 0.46 (-1) 0.98 (-1) 0.89 (-1) 0.94(-1)
04 0.124 0.124 0.129 0.100

35 0.223 (-3) 0.226 (-3) 0.1(-2)

Is 0.64 (-2) 0.64 (-2)

25 0.230 (-1) 0.23 (-1) 0.59 (-1)
36 0.158 (-3) 0.16 (-3)

0s 0.506 (-1) 0.51(-1) 0.66 (-1)
-15 0.148 (-2) 0.148 (-2)

26 0.197 (-1) 0.20 (-1) 0.32 (-1)
=24 0.266 (-1)

1g 0.774 (-3)

(a) Herrick and Sinanoglu [5]
(b) Ho Y K. [8]

(c) Zubek et al. [1]

(d) Domke et al. [3]
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Table 6. Total widths (I}:" in eV) of the ® P® autoionizing states of He converging to N = 4 threshold of the residual He™ ion.
The number in parenthesis is the power of ten by which the adjacent number should be multiplied.

States (K.,)

Present work

@ (®)

3 0.251 (-1)
N 0.724 (-1)
25 0.316 (-3)
35 0.206 (-1)
-1 0.553 (-1)
05 0.162 (-2)
15 0.329 (-1)
36 0.125 (-1)
2 0.421 (-3)
- 0.137 (-1)
1s 0.116 (-2)

0252(-1) 0.53(D)
0724 (-1)  0.130
0.314 (-3)

0.206 (-1)

0.574 (-1)

0.162 (-2)

0.329 (-1)

0.126 (-1)

0.420 (-3)

0.137 (-1)

(a) Herrick and Sinanoglu [5]
(b) Ho Y.K. [8]

Table 7. Total widths (in Ry) of the ' P° autodetaching states of the H™ ion converging to N = 5 hydrogen threshold. The
number in parenthesis is the power of ten by which the adjacent number should be multiplied.

Theoretical results

Experimental results

States Present (a) )] (e)
I'(5s 5p) 1.584(-3) 1.536(-3) 1.58 (-3) 1.6(-3)
I'(5d 5f) 8.3(-5) 4.86(-5)
- - 1.013(-3)
I'(5s 6p) 1.604(-3) 6.0(-4) 1.036(-3)
[ (5p 8d)  3.947(-4) 3.00(-5)
' (5s 7p) 5.234(-5) 3.76(-5)
I (5f 7g) 6.800(-5) 2.4(-4) 1.05(-3)
I" (10s 5p) 1.660(-5) 1.4(-5)
r(s5d1of) 2.777(-4) 1.6(-5)
I (10d 5%) 3.505(-5) 1.5(-4)
I'(5d 9) 2.008(-4)
I' (5p9d) 2.19(-4)

(a)Ho Y. K. [16]
(d) Harris et al. [11]
(e) Halka et al. [14]

Table 8. Total widths (in Ry) of the 3 P° autodetaching states
of the H™ ion converging to N = 5 hydrogen threshold. The
number in parenthesis is the power of ten by which the adjacent
number should be multiplied.

Theoretical calculations

States Present ()
T'(5s 5p) 1.566(-3) 1.38(-3)
I'(5p 5d) 1.983(-3) 1.42(-3)
T (5p 6d) 4.519(-4)

' (5s 7p) 7.076(-5)

T (5p 8d) 1.965(-4)

I'(8s 5p) 3.287(-5)

I'(5d 7%) 2.703(-4)

T (10s 5p) 8.890(-5)

T'(5g10h) 4.713(-4)

I'(5p 9d) 4.590(-5)

I'(5d10f) 5.607(-4)

T (5f10g) 3.356(-5) 2.26(-4)

(g) Ho Y. K. [17]

series for the 1 P% and (4, 3,,), (4, 1,,) and (4, —1,,) for the
3PV, Comparison with the experimental results, show that
the widths given by Domke et al. [3] for the less broad-
ened secondary series (4, 0,), agree with our results. In
contrast, the widths obtained for the broadened princi-
pal series (4, 2,,) are about two times greater than our
corresponding results. As mentioned by Domke et al. [3],
the principal series (4, 2,,) is strongly perturbed by the

broadening of resonances. This may explain the large dis-
agreement with our corresponding results. In addition, the
computation of the total widths that we have done in dif-
ferent basis, have shown that the values obtained for the
(4, 2,,) states are very stable with respect to the dimen-
sion of the basis (from 10 to 38), even when including
inter-series interaction with high lying-states of the (5, 3,,)
series.

The total widths of the negative hydrogen ion, are re-
ported in Table 7 for ! PV states and Table 8 for 3 P? states.
Concerning the ! P? states, comparison is made with the
theoretical results obtained by using the complex coordi-
nate rotation [15-17]. For ' P? states, comparison is also
made with experimental results obtained by Halka et al.
(1993) and Harris et al. (1990). Concerning the ! PY states,
our widths calculations agree well with other results spe-
cially for the lowest resonances. For the width of the ' P°
(1) our result is in excellent agreement with experimental
measurements.

The partial widths corresponding to decay of the 13 P°
(n = 4) resonances states of He and 1P (n = 5) autode-
taching states of H™ through the different open channels
are summarized in Tables 9-12. In all case, these partial
widths are given in the zero order of direct coupling be-
tween different continua and are, and represent the first
estimations of the magnitude of the decay of resonances
through the related open channels.
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Table 9. Partial widths (I'; in meV) of the ! P autoionizing states of He converging to N = 4 threshold of the residual He™

ion. The number in parenthesis is the power of ten by which the adjacent number should be multiplied.

states [iskp Doskp Dopks opkd [3skp [3pks I3pkd Daakp T3ake
24 0.058 6.911 1.323 1.207 14.496 1.683 18.386  0.460 1.951
04 0.089 0.245 0.015 0.003 1.848 2.851 61.457 5.805 52.012
35 0.05(-3) 0.009 0.32(-3) 0.003 0.001 0.124 0.036 0.031 0.016
15 0.014 1.385 0.226 0.175 2.817 0.643 1.055 0.017 0.072
25 0.031 3.493 0.660 0.567 8.289 1.058 7.290 0.242 0.967
3, 0.04(-3) 0.007  0.63(-3) 0.002  0.02(-2) 0.082 0.029 0023 0.012
0s 0.028 0.075 0.028 0.068 1.300 0.702 17.331 2.162 28.931
—15 0.34(-3) 0.003 0.12(-3) 0.07(-3) 0.035 0.026 0.157 0.292 0.969
26 0.025 3.142 0.641 0.730 7.602 1.314 6.024 0.244 0.013
-24 0.018 0.083 0.020 0.957 0.027 0.001 1.264 0.763 23.511
1l 0.01(-3) 0.007 0.005 0.010 0.058 0.05(-2) 0.377 0.045 0.267

Table 10. Partial widths (I; in meV) of the P° autoionizing states of He converging to N = 4 threshold of the residual He™

ion. The number in parenthesis is the power of ten by which the adjacent number should be multiplied.

states [iskp Toskp Dopks Topkd [3skp 3pks [3pkd Daakp ke
3, 0.123 4.041 1.944 0.762 0.073 0.883 6.604 0.369 0319
14 0.013 1.304 0.020 1.104 1.071 0.003 45362 7.453 16.068
25 0.03(-2) 0.06(-2) 0.002 0.08(3) 0.008 0.066 0.049 0.123 0.064
35 0.118 3.585 1.716 0.646  9.009 1.271 3.889 0.226 0.112
-1y < 107 0.066 0.063 0.112 0.810 0.382 11.594 0.840 41.443
05 0.002(-2) 0.001 0.003(-1) 0.003 0.044 0.227 0.044 0.127 1.170
1s 0.009 0.839 0.017 0.553 1.087 0.004 22310 4.525 3.520
36 0.074 2.164 1.057 0.404 5.516 0.843 2.222 0.135 0.113
26 0.24(-3) 0.023 0.004 0.003 0.049  0.093 0.113 0.091 0.041
-1s 0.12(-3)  0.002 0.025 0.011 0.159  0.092 1.521 0.023 11.916
16 0.15(-3) 0.031 0.04(-3) 0.036 0.066 0.064 0.386 0.060 0.514

Table 11. Partial widths I; (in meV) of the ' P° states of the H™ ion converging to N = 5 threshold of H, relating to the
following open channels j: 1skp, 2pks, 2skp, 2pkd, 3skp, 3pks, 3pkd, 3dkp, 3dkf, 4skp, 4pks, dpkd, 4dkp, 4dkf, 4fkd, and 4fkg.
The number in parenthesis is the power of ten by which the adjacent number should be multiplied.

states  I'isp  Toskp  Topks  Topka T3skp T3pks T3pkd T3ap T3kt Taskp Tapks  Tapka Taap  Taae  Tama  Tang

S5s5p  0.0016 0.0230 0.8481 0.0054 0.2817 0.0001 0.2117 0.9930 0.0228 2.5044 3.1821 1.2808 8.0565 3.8725 0.2728 0.0086
5d5f < 1(-5) 6(-5) 2(-5) <1(-5) 4(5) 0.0052 0.0026 0.0005 <1(-5) 0.0003 0.6002 0.4580 0.0002 0.0223 0.0428 0.1572
Ss6p  0.0025 0.0851 0.1333 0.2393 0.0054 0.5811 0.6821 3.0969 0.0108 1.0098 0.8839 0.1493 2.7773 8.6746 3.4933 3.7533
5p8d < 1(-5) 0.0033 0.1770 0.0468 0.1855 0.1260 0.0338 0.1149 0.0006 2.2801 0.3128 0.0069 0.9044 0.3920 0.7862 0.5676
57p  <1(-5) 1(5)  8(-5) <I(-5) <1(-5) 0.0023 0.0011 0.0003 <1(-5) 0.0328 02442 03150 0.0312 0.0474 0.0377 0.0242
5f7g 1(-5) 1.3(-4) 1.5(-4) 0.0010 0.0017 0.0012 0.0047 0.0164 1.4(-4) 0.1019 0.0668 0.0660 0.0125 0.3259 0.3266 0.0138
10s5p 1(-5) 0.0003 0.0047 0.0004 0.0006 0.0050 1.7(-4) 0.0093 0.0006 0.0326 0.0737 0.0217 0.0398 0.0338 0.0034 0.0558
5d10f 0.0011 0.0020 0.1855 0.0421 0.0219 0.0438 0.2059 0.3676 0.0809 0.0383 0.0132 0.0301 2.3661 0.2967 0.0827 1.3(-4)
10d5f 1(-5) 0.0003 0.0011 0.0008 1.4(-4) 0.0005 0.0062 0.0016 5(-5) 0.0611 0.0673 0.0022 0.0168 0.1541 0.1645 0.0014
5d9f  1(-5) 0.0399 0.0436 0.1171 03675 0.1061 0.7434 0.0008 0.0658 0.4877 0.0656 0.2409 0.0006 0.0529 0.3996 0.1571
5p9d  0.0003 1.2(-4) 0.0074 0.0003 0.2270 0.0032 0.0617 0.3063 0.0311 1.0125 0.6331 0.0069 0.0659 0.3830 0.2403 0.3618
7f5g 1.3(-4) 0.0008 0.0056 0.0049 0.0001 0.0152 0.0195 0.1409 7(-5) 0.0460 0.0161 0.0994 0.0093 0.6103 0.5339 0.0115
5d8f 5(-5) 0.0018 0.0271 0.0038 0.0187 0.0171 0.0317 0.0974 2(-5) 0.2379 0.0784 1(-5) 0.1023 0.2221 0.1443 0.0538
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Table 12. Partial widths I'; (in meV) of the *P° states of the H™ ion converging to N = 5 threshold of H, relating to the
following open channels j: 1skp, 2pks, 2skp, 2pkd, 3skp, 3pks, 3pkd, 3dkp, 3dkf, 4skp, 4pks, 4pkd, 4dkp, 4dkf, 4fkd, and 4 fkg.
The number in parenthesis is the power of ten by which the adjacent number should be multiplied.

states  I'isp  Toskp Topks Topka T3skp DI'apks  I3pkd T3akp  T3akf Taskp Tapks Dapkd Taap  Taae  Tama  Tang
5s5p  0.0139 0.0065 0.2996 0.0204 0.5576 0.0948 0.0797 0.2147 0.0100 4.1820 9.5428 3.2017 1.7238 1.0896 0.2791 0.4374
S5p5d  0.0030 0.0260 0.0801 0.0057 0.1632 0.0009 0.2181 1.5547 0.1785 3.7567 0.0284 0.0222 9.7790 11.054 0.1128 0.8412
S5p6d  0.0085 0.0056 0.1511 0.0086 0.3380 0.0117 0.0225 0.0687 0.0012 3.9385 0.1102 0.0006 1.2559 0.2247 0.0032 1.8(-4)
587p  <1(-5) L7(-4) <1(-5) <1(-5) 1.8(-4) 0.0033 0.0041 0.0020 <1 (-5) 0.0002 0.2666 0.3933 0.0095 0.1210 0.1624 3.6(-4)
S5p8d  0.0042 0.0015 0.1009 0.0098 0.1282 0.0093 0.0074 0.0707 0.0024 1.2901 1.5(-4) 0.0155 0.8564 0.1780 2(-5) 0.0061
8s5p 1(-5) 1(-5) 6.6(4) 2(-5 8.7(4) 1.6(-4) 0.0021 0.0019 9(-5) 0.0331 0.0883 0.1108 0.0190 0.1164 0.0737 0.0049
5d7f  5.5(-4) 0.0036 0.0078 7(-5) 0.0158 0.0036 0.0483 0.2569 0.0244 0.4589 0.0242 0.1838 1.0487 1.2245 0.3765 0.3551
10s5p 0.0017 0.0064 0.0031 0.0029 0.1313 0.0001 0.0015 0.0229 0.0019 0.6327 0.0130 0.2181 0.0124 0.1054 0.0560 2.6(-4)
5gl0h 0.0021 0.0088 7.7(-4) 0.0201 0.2315 0.0431 0.0386 0.0972 0.0126 1.0702 0.1519 0.0222 0.2259 0.3561 0.0500 0.0155
5p9d  8.3(-4) 0.0025 2.4(-4) 0.0106 0.0944 0.0157 0.0278 0.0247 0.0143 0.2553 0.0271 0.0038 0.0969 0.0057 0.0446 0.0854
5d10f 0.0043 0.0017 0.1503 0.0078 0.2115 7.9(-4) 0.0458 0.3403 0.0190 2.6239 0.0496 0.2516 2.7622 1.0034 0.1565 0.0522
5f10g  1(-5)  6(-5) 8.2(-4) 7.5(-4) 0.0018 0.0039 4.7(-4) 8(=5) <I(-5) 0.0642 0.0758 0.0498 0.0654 0.1480 0.0454 0.0212
7s5p 6(-5) 5.1(-4) 0.0105 0.0246 0.0126 0.0699 0.0702 0.0476 0.0066 0.0073 0.0047 0.0853 0.1113 0.3918 1.1017 0.8400
4 Conclusion 8. Y.K. Ho, Phys. Lett. A 79, 44 (1980).
9. D. Wintgen, D. Delande, J. Phys. B: At. Mol. Opt. Phys.

The resonance parameters of He such as excitation ener-
gies and total widths reported here are in good agreement
with other theoretical calculations except the results ob-
tained by Ho in the complex rotation method. Concerning
the (4, 2,,) broadened series of He it should be important
to have new experimental data on the total width of these
resonances for better understanding of theoretical results.
Concerning the 13P? (N = 5) resonance parameters of
H™, the results reported here are in good agreement with
other theoretical calculations and experimental data. In
the calculation of the total widths, a simple treatment
of the continuum has provided widths in good agreement
with experimental measurements and theoretical calcula-
tions reported here, especially for the H™ ion. Neverthe-
less for better understanding of intra-channel process in
the decay of doubly-excited in two-electron systems it will
be of interest to look at the higher order approximation
in the determination of the partial widths.

The authors would like to thank the Swedish International De-
velopment Agency (SIDA), the International Centre for Theo-
retical Physics (ICTP) and Professor G. Denardo for financial
support and hospitality at the International Centre for Theo-
retical Physics in Trieste, Italy.

References

1. M. Zubek, G.C. King, P.M. Rutter, F.H. Read, J. Phys.
B: At. Mol. Opt. Phys. 22, 3411 (1989).

2. M. Domke, K. Schulz, G. Remmers, A. Gutierrez, G.
Kaindl, D. Wintgen, Phys. Rev. A 51, R4309 (1995).

3. M. Domke, K. Schulz, G. Remmers, G. Kaindl, D.
Wintgen, Phys. Rev. A 53, 1424 (1996).

4. R.S. Oberoi, J. Phys. B 5, 1120 (1972) .

5. D.R. Herrick, O. Sinanoglu, Phys. Rev. A 11, 97 (1975).

6. O. Robaux, J. Phys. B: At. Mol. Opt. Phys. 20, 2347
(1987).

7. B.F. Davis, K.T. Chung, Phys. Rev. A 26, 2743 (1981).

10.

11.

12.

13.

14.

26, L399 (1993).

H. Fukuda, N. Koyama, M. Mutsuzawa, J. Phys. B 20,
2959 (1987).

P.G. Harris, H.C. Bryant, A.H. Mohagheghi, R.A. Reeder,
C.Y. Tang, J.B. Donahue, C.R. Quick, Phys. Rev. A 42,
6443 (1990).

M. Halka, H.C. Bryant, E.P. Mackerrow, W. Miller, A.H.
Mohagheghi, C.Y. Tang, S. Cohenq, J.B. Donahue, A. Hsu,
C.R. Quick, J. Tiee, K. Rozsa, Phys. Rev. A 44, 6127
(1991).

P.G. Harris, H.C. Bryant, A.H. Mohagheghi, R.A. Reeder,
H. Sharifian, C.Y. Tang, H. Tootoonchi, J.B. Donahue,
C.R. Quick, D.C. Rislove, W.W. Smith, J.E. Stewart,
Phys. Rev. Lett. 65, 309 (1990).

M. Halka, P.G. Harris, A.H. Mohagheghi, R.A. Reeder,
C.Y. Tang, H.C. Bryant, J.B. Donahue, A. Hsu, C.R.
Quick, Phys. Rev. A 48, 419 (1993).

. Y.K. Ho, J. Callaway, Phys. Rev. A 34, 130 (1986).

Y .K. Ho, Phys. Rev. A 45, 148 (1992).

Y .K. Ho, Phys. Rev. A 50, 4877 (1994).

N. Koyama, H. Fukuda, T. Motoyama, M. Matsuzawa, J.
Phys. B: At. Mol. Opt. Phys. 22, 553 (1989).

H.R. Sadeghpour, Phys. Rev. A 43, 5821 (1991).

V.V. Balashov, S.I. Grishanova, .M. Kruglova, V.S.
Senashenko, Opt. Spectrosc. T 28, 858 (1970).

. V.S. Senashenko, A. Wagué, J. Phys. B: At. Mol. Phys.

12, L269 (1979).

. A. Wagué, Z. Phys. D 6, 337 (1987).
. N.A.B. Faye, A. Wagué, Z. Phys. D 31, 37 (1994).

N.A.B. Faye, A. Wagué, J. Phys. B 28, 1735 (1995).

. A. Ndao, Ph.D. thesis, Université C.A.D. Dakar, 1997.
. A. Wagué,

Ph.D.
Toulouse, 1984.
Yu.K. Zemstov, Opt. Spectrosk. 37, 626 (1974).

thesis, Université Paul Sabatier,

. M. Abramowitz, I.A. Stegun, in Handbook of Mathematical

Functions (Dover, New York, 1965).

B.H. Bransden, A. Dalgarno, Proc. Phys. Soc. Lond. A 66,
904 (1953).

R.P. Madden, K. Codling, Astrophys. J. 141, 364 (1965).

. P.R. Woodruff, J.A.R. Samson, Phys. Rev. A 25, 848

(1982).



